Refine Your Search

Topic

Author

Search Results

Technical Paper

Effect of Fuel Parameters on Speciated Hydrocarbon Emissions from a Direct Injection Spark Ignition Engine

2000-06-19
2000-01-1908
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested over the Federal Test Procedure (FTP) driving cycle. Speciated engine-out hydrocarbon emissions were measured. Seven fuels were used for these tests: five blended fuels and two pure hydrocarbon fuels. One of the blended fuels was CARB Phase 2 reformulated gasoline which was used as the reference fuel. The remaining four blended fuels were made from refinery components to meet specified distillation profiles. The pure hydrocarbon fuels were iso-octane and toluene - an alkane and an aromatic with essentially identical boiling points. The five blended fuels can be grouped to examine the effects of fuel volatility and MTBE. Additionally, correlations were sought between the fuel properties and the Specific Reactivity, the exhaust “toxics”, and the pass-through of unburned fuel species.
Technical Paper

The Effects of In-Cylinder Flow Fields and Injection Timing on Time-Resolved Hydrocarbon Emissions in a 4-Valve, DISI Engine

2000-06-19
2000-01-1905
Direct injection spark-ignition (DISI) engines have been shown to have much higher engine-out hydrocarbon emissions (HC) than port fuel injected (PFI) engines. A major contribution to the increase in HC emissions is from the in-cylinder surface wetting that occurs as the fuel is injected. A previous study using an optical access engine and a fuel concentration probe demonstrated that the in-cylinder flow field and injection timing have a significant effect on the equivalence ratio at the spark plug. This study continues that work, by using a fast spectroscopic HC emission measurement device (Fast-Spec) to study time-resolved HC emissions from a 4-valve, centrally injected, single cylinder DISI engine. Three flow fields are studied: tumble, reverse tumble and stock. The tumble and reverse tumble flow fields are achieved using shrouded valves. Both early and late start of injection (SOI) timings are investigated.
Technical Paper

Development of a Low-Emission, Dedicated Ethanol-Fuel Vehicle with Cold-Start Distillation System

1999-03-01
1999-01-0611
This paper discusses the design and strategy for conversion of a vehicle to dedicated E85 (85% ethanol, 15% indolene clear) operation for participation in the 1998 Ethanol Vehicle Challenge by the University of California, Riverside. The primary focus of the design consists of: Development of a -7°C cold starting system utilizing a distillation process. Development of a close-coupled catalyst and secondary air injection system to decrease FTP cold start emissions. This paper begins with a theoretical description and design of a novel distillation system that can provide gasoline- enriched fuel for starting in cold weather. This is followed by a description of modifications to the engine, emission control system, and other vehicle components. Modifications included engine changes to increase thermal efficiency, to improve handling, and to reduce friction. Suspension modifications were made to improve handling.
Technical Paper

Effects of Load on Emissions and NOx Trap/Catalyst Efficiency for a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1528
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested at constant engine speed (2000 rpm) over a range of loads. Engine-out and tailpipe emissions of gas phase species were measured each second. This allowed examination of the engine-out emissions for late and early injection. Regeneration of the lean NOx trap/catalyst was also examined, as was the efficiency of NOx reduction. NOx stored in the trap/catalyst is released at the leading edge of regenerations, such that the tailpipe NOx is higher than the engine-out NOx for a brief period. The efficiency of NOx reduction was <50% for the lowest loads examined. As the load increased, the efficiency of NOx reduction decreased to near 0% due to excessive catalyst temperatures. Loads sufficiently high to require a rich mixture produce high NOx reduction efficiencies, but in this case the NOx reduction occurs via the three-way catalysts on this vehicle.
Technical Paper

Emissions and Fuel Economy of a 1998 Toyota with a Direct Injection Spark Ignition Engine

1999-05-03
1999-01-1527
A 1998 Toyota Corona passenger car with a direct injection spark ignition (DISI) engine was tested via a variety of driving cycles using California Phase 2 reformulated gasoline. A comparable PFI vehicle was also evaluated. The standard driving cycles examined were the Federal Test Procedure (FTP), Highway Fuel Economy Test, US06, simulated SC03, Japanese 10-15, New York City Cycle, and European ECE+EDU. Engine-out and tailpipe emissions of gas phase species were measured each second. Hydrocarbon speciations were performed for each phase of the FTP for both the engine-out and tailpipe emissions. Tailpipe particulate mass emissions were also measured. The results are analyzed to identify the emissions challenges facing the DISI engine and the factors that contribute to the particulates, NOx, and hydrocarbon emissions problems of the DISI engine.
Technical Paper

The Effect of In-Cylinder Wall Wetting Location on the HC Emissions from SI Engines

1999-03-01
1999-01-0502
The effect of combustion chamber wall-wetting on the emissions of unburned and partially-burned hydrocarbons (HCs) from gasoline-fueled SI engines was investigated experimentally. A spark-plug mounted directional injection probe was developed to study the fate of liquid fuel which impinges on different surfaces of the combustion chamber, and to quantify its contribution to the HC emissions from direct-injected (DI) and port-fuel injected (PFI) engines. With this probe, a controlled amount of liquid fuel was deposited on a given location within the combustion chamber at a desired crank angle while the engine was operated on pre-mixed LPG. Thus, with this technique, the HC emissions due to in-cylinder wall wetting were studied independently of all other HC sources. Results from these tests show that the location where liquid fuel impinges on the combustion chamber has a very important effect on the resulting HC emissions.
Technical Paper

Conversion of a 1999 Silverado to Dedicated E85 with Emphasis on Cold Start and Cold Driveability

2000-03-06
2000-01-0590
The University of Texas Ethanol Vehicle Challenge team focused upon cold start/driveability, fuel economy, and emissions reduction for our 1999 Ethanol Vehicle Challenge entry. We replaced or coated all fuel system components that were not ethanol compatible. We used the stock PCM for all control functions except control of a novel cold-start system our team designed. The primary modifications for improved emissions control involved ceramic coating of the exhaust manifolds, use of close-coupled ethanol-specific catalysts, increased EGR for the operating conditions of the five longest cruises on the FTP, and our cold-start system that eliminates the need to overfuel the engine at the beginning of the FTP. This EGR control scheme should also benefit urban fuel economy. Additionally, we eliminated EGR at high load to improve power density.
Technical Paper

Emissions, Fuel Economy, and Performance of a Class 8 Conventional and Hybrid Truck

2015-04-14
2015-01-1083
Emissions, fuel economy, and performance are determined over a light and a heavy driving cycle designed to represent the vehicles in-use driving patterns. The vehicles are 2010 class 8 Freightliner tractor trucks equipped with Cummins engines with Selective Catalytic Reduction and Diesel Particulate Filter emission control systems. The hybrid has lower carbon dioxide emissions, better fuel economy, and nitrogen oxide emissions statistically the same as the conventional. The CO emissions are well below the standards for both vehicles, but they are higher from the hybrid. The higher CO emissions for the hybrid are primarily related to the cooling of the Diesel Oxidation Catalyst (DOC) during the standard 20 minute key-off soak between repeats of the driving cycles. With a 1 minute key-off soak the CO emissions from the hybrid are negative.
Technical Paper

Regulated Emissions from Liquefied Petroleum Gas (LPG) Powered Vehicles

2014-04-01
2014-01-1455
Engine manufacturers have explored many routes to reducing the emissions of harmful pollutants and conserving energy resources, including development of after treatment systems to reduce the concentration of pollutants in the engine exhaust, using alternative fuels, and using alternative fuels with after treatment systems. Liquefied petroleum gas (LPG) is one alternative fuel in use and this paper will discuss emission measurements for several LPG vehicles. Regulated emissions were measured for five school buses, one box truck, and two small buses over a cold start Urban Dynamometer Driving Schedule (CS_UDDS), the Urban Dynamometer Driving Schedule (UDDS), and the Central Business District (CBD) cycle. In general, there were no significant differences in the gas phase emissions between the UDDS and the CBD test cycles. For the CS-UDDS cycle the total hydrocarbons and non-methane hydrocarbon emissions are higher than they are from the UDDS cycle.
Technical Paper

Determination of Suspended Exhaust PM Mass for Light-Duty Vehicles

2014-04-01
2014-01-1594
This study provides one of the first evaluations of the integrated particle size distribution (IPSD) method in comparison with the current gravimetric method for measuring particulate matter (PM) emissions from light-duty vehicles. The IPSD method combines particle size distributions with size dependent particle effective density to determine mass concentrations of suspended particles. The method allows for simultaneous determination of particle mass, particle surface area, and particle number concentrations. It will provide a greater understanding of PM mass emissions at low levels, and therefore has the potential to complement the current gravimetric method at low PM emission levels. Six vehicles, including three gasoline direct injected (GDI) vehicles, two port fuel injected (PFI) vehicles, and one diesel vehicle, were tested over the Federal Test Procedure (FTP) driving cycle on a light-duty chassis dynamometer.
Technical Paper

An On-Board Distillation System to Reduce Cold-Start Hydrocarbon Emissions

2003-10-27
2003-01-3239
An On-Board Distillation System (OBDS) was developed to extract, from gasoline, a highly volatile crank fuel that allows the reduction of startup fuel enrichment and significant spark retard during cold starts and warm-up. This OBDS was installed on a 2001 Lincoln Navigator to explore the emissions reductions possible on a large vehicle with a large-displacement engine. The fuel and spark calibration of the PCM were modified to exploit the benefits of the OBDS startup fuel. Three series of tests were performed: (1) measurement of the OBDS fuel composition and distillation curve per ASTM D86, (2) measurement of real-time cold start (20 °C) tailpipe hydrocarbon emissions for the first 20 seconds of engine operation, and (3) FTP drive cycles at 20 °C with engine-out and tailpipe emissions of gas-phase species measured each second. Baseline tests were performed using stock PCM calibrations and certification gasoline.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
Technical Paper

Emissions from Advanced Ultra-Low-NOx Heavy-Duty Natural Gas Vehicles

2019-04-02
2019-01-0751
The emissions of two ultralow NOx heavy-duty (HD) vehicles equipped with 0.02 g/bhp-hr low NOx natural gas (NG) engines were evaluated on a chassis dynamometer. This included a waste hauler and a city transit bus, each with a 0.02 g/bhp-hr NOx L9N near zero (NZ) natural gas engine. The vehicles were tested over a variety of different cycles, including the Urban Dynamometer Driving Schedule (UDDS), port drayage cycles, transit bus cycles, and a refuse truck cycle. For both vehicles, the NOx emissions results were below the 0.02 g/bhp-hr level for most cycles, with the exception of some cold start tests. For the waste hauler, NOx emissions averaged between 0.014 and 0.002 g/bhp-hr for the hot start tests, and from 0.043 to 0.014 g/bhp-hr for the cold start tests. This represented NOx emissions reductions from 97%-100% of compared with previous ISL G 8.9 engines.
X